Microtubule- and dynein-mediated movement of Orientia tsutsugamushi to the microtubule organizing center.
نویسندگان
چکیده
The host cell microfilaments and microtubules (MTs) are known to play a critical role in the life cycles of several pathogenic intracellular microbes by providing for successful invasion and promoting movement of the pathogen once inside the host cell cytoplasm. Orientia tsutsugamushi, an obligate intracellular bacterium, enters host cells by induced phagocytosis, escapes to the cytosol, and then replicates in the cytosol. ECV304 cells infected with O. tsutsugamushi revealed the colocalization of the MT organizing center (MTOC) and cytosolic orientiae by indirect immunofluorescence assay. Using immunofluorescence microscopy in the presence and absence of MT-depolymerizing agents (colchicine and nocodazole), it was shown that the cytosolic oriential movement was mediated by MTs. By transfection study (overexpression of dynamitin [also called p50], which is known to associate with dynein-dependent movement), the movement of O. tsutsugamushi to the MTOC was also mediated by dynein, the minus-end-directed MT-related motor. Although the significance of this movement in the life cycle of O. tsutsugamushi was not proven, we propose that the cytosolic O. tsutsugamushi bacteria use MTs and dyneins to propel themselves from the cell periphery to the MTOC.
منابع مشابه
Stabilizing Microtubular Network Facilitates the Intracellular Growth of Orientia tsutsugamushi
Microtubule network provides many intracellular microbes with an efficient way to move within host cells. Orientia tsutsugamushi move from the cell periphery to the microtubule organizing center (MTOC) by dynein-dependent mechanism. In this study, we investigated the role of microtubule on the growth of O. tsutsugamushi. The treatment of infected cells with taxol as well as daunomycin enhanced ...
متن کاملPushing forces drive the comet-like motility of microtubule arrays in Dictyostelium.
Overexpression of dynein fragments in Dictyostelium induces the movement of the entire interphase microtubule array. Centrosomes in these cells circulate through the cytoplasm at rates between 0.4 and 2.5 microm/s and are trailed by a comet-tail like arrangement of the microtubule array. Previous work suggested that these cells use a dynein-mediated pulling mechanism to generate this dramatic m...
متن کاملMicrotubule binding by dynactin is required for microtubule organization but not cargo transport
Dynactin links cytoplasmic dynein and other motors to cargo and is involved in organizing radial microtubule arrays. The largest subunit of dynactin, p150(glued), binds the dynein intermediate chain and has an N-terminal microtubule-binding domain. To examine the role of microtubule binding by p150(glued), we replaced the wild-type p150(glued) in Drosophila melanogaster S2 cells with mutant Del...
متن کاملGolgi positioning.
The Golgi apparatus in mammalian cells is positioned near the centrosome-based microtubule-organizing center (Fig. 1). Secretory cargo moves inward in membrane carriers for delivery to Golgi membranes in which it is processed and packaged for transport outward to the plasma membrane. Cytoplasmic dynein motor proteins (herein termed dynein) primarily mediate inward cargo carrier movement and Gol...
متن کاملIntegrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta.
We describe here a signal transduction pathway controlling the establishment of mammalian cell polarity. Scratching a confluent monolayer of primary rat astrocytes leads to polarization of cells at the leading edge. The microtubule organizing center, the microtubule cytoskeleton, and the Golgi reorganize to face the new free space, and directed cell protrusion and migration specifically occur p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 69 1 شماره
صفحات -
تاریخ انتشار 2001